ROTATION MATRIX

Example 1. The matrix representing the linear transformation $T: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2}, where T is the rotation in the counter-clockwise direction by degree θ in \mathbb{R}^{2}, is given by

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Proof. Recall the Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

This is the same as the vector $(x, y)=(\cos \theta, \sin \theta)$ in the $x-y$ plane. This is a vector of unit length because $x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$. The angle between (x, y) and the x-axis is θ because $y / x=\tan \theta$.

Now take an arbitrary vector (a, b) in the $x-y$ plane. This is the same as the complex number

$$
a+i b=\sqrt{a^{2}+b^{2}}\left[\left(a / \sqrt{a^{2}+b^{2}}\right)+i\left(b / \sqrt{a^{2}+b^{2}}\right)\right]=R e^{i \beta}
$$

where $R=\sqrt{a^{2}+b^{2}}$ and $\beta=\arctan (b / a)$ (consider why?).
To rotate (a, b) in the counter-clockwise direction by degree θ is the same as multiplying $R e^{i \beta}$ by $e^{i \theta}$. Indeed,

$$
R e^{i \beta} e^{i \theta}=R e^{i(\beta+\theta)}
$$

This is a vector with length R; and the angle between $R e^{i(\beta+\theta)}$ and the x-axis is $\beta+\theta$. Now let us compute this number

$$
R e^{i \beta} e^{i \theta}=(a+i b)(\cos \theta+i \sin \theta)=a \cos \theta-b \sin \theta+i(a \sin \theta+b \cos \theta)
$$

So rotating (a, b) in the counter-clockwise direction by degree θ, the resulting vector is

$$
(a \cos \theta-b \sin \theta, a \sin \theta+b \cos \theta)
$$

or equivalently, in matrix language,

$$
\left[\begin{array}{l}
a \cos \theta-b \sin \theta \\
a \sin \theta+b \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Now we have proved that to rotate a vector (or equivalently a 2 -column matrix) in \mathbb{R}^{2} in the counter-clockwise direction by degree θ is the same as multiplying this column matrix.

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

